- resistance and climate resistance(it is best to be resistant to the line, ozone and radiation) and chemical
After the oil seal is positioned in the groove, apply even pressure to the oil seal using a seal driver or a similar tool. This will help to seat the oil seal firmly in the groove and prevent it from moving during use. Make sure to apply the pressure evenly and gently, as applying too much force can damage the oil seal or cause it to deform.



Necessary to check compatibility with fluids
(See *2)
Lubricants applied between moving and stationary elements of mechanical equipment help to prevent damage. But when the equipment are under high pressure, the lubricants tend to escape, hence the need for oil seals to prevent the clashing of dry parts. Practically all mechanical equipment, including car engines, assembly machines, and PTFE machined parts use these oil seals to prevent harmful interaction that can result in damaged parts.
0.4 to 1.6 μmRa,
1.6 to 6.3 μmRz
2. For rubber O.D. wall type:
1.6 to 3.2 μmRa,
6.3 to 12.5 μmRz
(Firmly affixes the oil seal and prevents leakage through the seal O.D.)
Despite being a great substitute for more expensive high temperature resistant materials, polyacrylate has a problem of poor water compatibility and cold flexibility.
4) Allowable total eccentricity

The construction of an oil seal is a testament to meticulous engineering. Each oil seal primarily comprises two core components: the sealing element and the metal case. The collaboration of these parts brings about the seal’s functionality and effectiveness. A garter spring may also be included as an available feature, providing an extra layer of operational support.
Require More Knowledge?

